What You Can Learn About Your Health by Analyzing the Color and Smell of Your Urine

Story at-a-glance

  • Urine has been an important diagnostic tool for 6,000 years, as well as having some surprising historical uses
  • You can learn a great deal about your overall health by examining your urine and noting its color, odor, and consistency; your urine can be a powerful window into your overall health
  • Urine color and odor can be altered by your diet, medications, Continue reading

Following a Trail of Blood: a New Diagnostic Tool Comes of Age

Blood tests have been a mainstay of diagnostic medicine since the late 19th century, offering a wealth of information concerning health and disease. Nevertheless, blood derived from the human umbilical cord has yet to be fully mined for its vital health information, according to Rolf Halden, a researcher at Arizona State University’s Biodesign Institute. Continue reading

Diagnosis of Fatal Genetic Diseases by Blood-Clotting Agent

University of Manchester scientists have shown that a protein involved in blood clotting can be used to diagnose and subsequently monitor the treatment of a group of childhood genetic diseases.

In the study, published in the Journal of Inherited Metabolic Disease, the researchers were able to show that the clotting agent, heparan cofactor II/Thrombin (HCII/T) complex, could be used as a ‘biomarker’, or biological tell, in individuals with mucopolysaccharide (MPS) diseases.

MPS diseases are severe metabolic conditions caused by a genetic defect that affects the body’s ability to break down complex sugars in cells and the bloodstream. The conditions result in a range of symptoms from abnormal skeletal development to mental decline and even premature death depending on the type of sugars built up in the body.

Treatment options have been limited but recent advances whereby the missing or faulty enzyme that breaks down the sugars is replaced artificially in affected individuals has made the need for an accurate diagnostic tool for these diseases more pressing.

Lead researcher Dr Brian Bigger, from Manchester’s MPS Stem Cell Research Laboratory, said: “HCII/T complex was originally developed in Canada as a test for patients with MPSI, II and VI. We were able to show that HCII/T complex can clearly distinguish between untreated patients with MPSI, MPSII, MPSIIIA, MPSIIIB, MPSIIIC, MPSVI and unaffected individuals.

“We also went on to monitor long-term clinical outcomes in patients with MPSI, MPSII and MPSVI after treatment to show that elevations of both this biomarker, and the dermatan sulphate:chondroitin sulphate biomarker currently used in the diagnostic laboratory in Manchester, correlated with clinical treatment outcomes in patients.

“Two of the sugars that are commonly accumulated in MPS diseases are heparan sulphate (HS) and dermatan sulphate (DS). Other sugars such as chondroitin sulphate (CS) are usually not accumulated in the disease. By measuring the ratio of DS:CS in urine we can accurately diagnose the disease, but detection of sugars is expensive and technically challenging. Instead, the HCIIT method relies on detection of proteins binding to sugars and is much cheaper to perform.”

Simon Jones, a consultant pediatrician at St Mary’s Hospital in Manchester and co-author on the paper, added: “These are difficult diseases to treat and monitor so advances such as this will help us to diagnose and treat patients more effectively in the future.”